
AN ALGEBRAIC APPROACH TO LINEAR DIFFERENTIAL
OPERATORS

JARVIS KENNEDY

Abstract. This undergraduate research report is an introduction to the theory
of monic homogeneous linear differential operators over fields of characteristic 0,
studied from an algebraic perspective. Using Differential Algebra and Differential
Galois Theory, we show that the differential equation y′ = t−y2 has no “elementary”
solutions.
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2. Introduction

In this report, we aim to prove that the differential equation y′ = t − y2 has
no elementary solutions. Of course, this equation can be solved using other methods
including power series and Bessel functions. However, these solutions are not classified
as “elementary” solutions (which has a purely algebraic description). In order to
achieve this goal, we will build up some of the more abstract theory of Differential
Algebra and Differential Galois Theory. Most of the theory was taken from Andy
Magid’s Lectures on Differential Galois Theory [1], and the many examples (including
the equation y′ = t − y2) were taken from John Hubbard’s paper A Frist Look at
Differential Algebra [3].

A few of the results in this report were adapted from Magid’s book and re-stated or
re-proved in a slightly different way. This was done because we felt that there was a
simpler or more natural way to state and prove the results. Specifically, Propositions
5.1 and 5.4, and Theorems 4.4 and 5.6 were modified (see the remarks following each
Proposition/Theorem).

This report was written for a reader who has previously studied Galois Theory.
For more on Algebraic Groups and Galois Theory, see [4] and [5] respectively.

3. Differential Rings and Fields

Conventions.

In the context of this report, a ring will always be understood to be a commutative
ring with unity.

Date: August 28, 2018.
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3.1. Definition. A differential ring is a ring R together with a derivation, that is, a
map DR : R→ R satisfying,

• DR(a+ b) = DR(a) +DR(b)

• DR(ab) = aDR(b) +DR(a)b

for every a, b ∈ R.

When the context is clear, the subscript R will be dropped, and often we will use
the familiar notation a′ for D(a). In the case that R is a field, it will be called a
differential field. Throughout, we will always consider fields that have characteristic
0.

From this definition, we get immediate (and expected) properties of any derivation.

• D(1) = 0

• D(xn) = nxn−1D(x) for n ≥ 1

• D(x/y) = yD(x)−xD(y)
y2

for y a unit.

The sub-ring of constants is the kernel of D. In the case of fields, this is a subfield.
An extension of differential rings, is a ring extension in the usual sense (S ⊃ R),

for which DS restricted to R is DR.
A homomorphism of differential rings σ : R → S, is a ring homomorphism for

which σ(DR(a)) = DS(σ(a)).
Now we consider some basic concepts in ring theory; quotients, fields of fractions,

and tensor products.
Let R be a differential ring. A differential ideal is an ideal I of R which is closed

with respect to the derivation. It follows that the quotient R/I is a differential ring
with DR/I(a+ I) = DR(a) + I. This derivation is well defined, since DR(I) ⊂ I.

Next we consider rings of fractions. Let R be a differential ring and Q a multiplica-
tively closed subset of R containing 1 and not 0. Then we define D : Q−1R→ Q−1R
by

D(a/b) =
bD(a)− aD(b)

b2
.

This turns Q−1R into a differential ring. With this derivation, the field of fractions
of a differential integral domain is a differential field. For more details, see page 2 of
[1].

Next, let R be a differential ring, and let S and T be differential R−algebras. We
can turn the tensor product S ⊗R T into a differential R−algebra by defining

D(a⊗ b) = DS(a)⊗ b+ a⊗DT (b).
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Linear Differential Operators.

3.2. Definition. Let F be a differential field and α0, . . . , αn−1 ∈ F . A monic linear
homogeneous differential operator of order n over F is a map L : F → F that has
the form

L(y) = y(n) + αn−1y
(n−1) + . . .+ α0y

where
y(m) = D(D(. . . D︸ ︷︷ ︸

m-times

(y) . . .)).

Homogeneous linear differential operators over F play the role in Differential Galois
Theory that polynomials play in regular Galois Theory. Hence, we wish to study
solutions to L(y) = 0, and the splitting field of L over F (called Picard-Vessiot
extensions, the precise definition is given in section 4). As already mentioned, we
require the splitting field, E, to extend both F and the derivation DF . This gives
rise to some questions. How can we be sure that such an extension E with derivation
DE exists? If one does, is it unique? Is the derivation unique?

In the case of regular Galois Theory, we can take the base field to be Q and the
splitting field to be some subfield of C. Our questions about existence are then
answered by the Fundamental Theorem of Algebra. In the differential case, we may
take an analogous approach. That is, we may take the base field to be the rational
functions C(t), and the splitting field to be a subfield of the meromorphic functions,
M(U) (quotients of analytic functions defined on an open subset U of C), with the
usual derivation.

The reason we can do this is the existence and uniqueness theorem for ordinary
differential equations over C: If U is a simply connected open subset of C, and
α0, . . . , αn−1 are analytic on U , then the differential equation

L(y) = y(n) + αn−1y
(n−1) + . . .+ α0y = 0

has a unique solution in M(U), for any t0 in U and any initial conditions

y(t0) = y0, y
′(t0) = y1, . . . , y

(n−1)(t0) = yn−1

(see [2]). As will be shown in the next section, this leads to the fact that there are
n solutions linearly independent over constants in M(U), and the splitting field will
be some differential subfield of M(U).

We can actually say more than this. As we shall see, we can find a unique splitting
field for any homogeneous linear differential operator over more general fields. How-
ever, we will often come back to the example of meromorphic functions to illustrate
results. For now, we define the splitting field in the case of meromorphic functions.

3.3. Definition. Let U be a simply connected open subset of C, F be a subfield of
M(U), and L(y) = y(n) +αn−1y

(n−1) + . . .+α0y be a differential operator where each
αi ∈ F is analytic on U . The splitting field of L over F inM(U), denoted EL, is the
smallest subfield of M(U) which contains F and every solution to L(y) = 0 on U .

3.4. Example. (see Example 2.6 of [3]) One of the simplest examples is the differential
operator L(y) = y − y′ over C(t). The coefficients are analytic on all of C, so the
splitting field will be a differential subfield of M(C). The solutions to this operator
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are the functions for which y′ = y, which are functions of the form Cet, where C ∈ C.
From this, it should be more or less clear that the splitting field is the space of
functions whose elements look like

P0(t) + P1(t)e
t + . . .+ Pm(t)emt

Q0(t) +Q1(t)et + . . .+Qn(t)ent
,

where each Pi and Qj is a complex polynomial, and the denominator is not iden-
tically zero.

Constants.

3.5. Example. (see page 8 of [1]) Consider the rational functions over the complex
numbers, C(t). Let C((t)) be the corresponding field of formal power series. Then
under the usual derivation, C((t)) is a differential field, and C(t) a differential subfield.
Let f be the usual exponential series, so that D(f) = f . Now, consider the field F ,
obtained by adjoining f to the field of constants C, and the differential operator
y′ − y = 0 over F . Suppose we extend F by a new formal solution g, so that
D(g) = g. This is a superfluous addition, since F already contains the solution f .
The derivation of their ratio is then

D(
g

f
) =

fD(g)− gD(f)

f 2
=
fg − gf
f 2

= 0,

so by adding this new solution g, we have created a new constant, g
f
.

We wish to avoid adding superfluous solutions and creating new constants. This
leads to the next definition.

3.6. Definition. A differential field extension E ⊃ F is said to be a no new constant
extension if the kernel ofDE coincides with the kernel ofDF . Otherwise, the extension
is said to contain new constants.

We will need a condition on our differential field extensions in order to guarantee
that they are no new constant extensions. This next theorem, and its corollary
provides this condition.

3.7. Theorem. Let R be a differential integral domain, finitely generated over the
differential field F . Let E denote the quotient field of R, and let C denote the field
of constants of F . Suppose E contains a constant, d, which is not in C. If d is not
algebraic over C, then R contains a proper differential ideal.

Proof. See Theorem 1.17 on page 11 of [1]. �

It is the contrapositive of this theorem which will be useful for us. Stated in the
corollary below, it gives us a condition to guarantee a no new constant extension,
provided that the field of constants of F is algebraically closed. The condition of
algebraic closure will not be an issue, since the examples we care about are C(t) and
M(u), which have field of constants C.

nnc

3.8. Corollary. Let R be a differential integral domain, finitely generated over the
differential field F . Let E be the quotient field of R, and let C be the field of constants
of F . Assume that R contains no proper differential ideals and that C is algebraically
closed. Then the field of constants of E coincides with C.
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Proof. The proof is immediate from the previous theorem. �

In for this Corollary to be effective, we will need to construct differential integral
domains with no proper differential ideals. Given a differential ring R, Zorn’s lemma
guarantees the existence of a proper maximal differential ideal, I. The quotient R/I
will be a differential ring which contains no proper differential ideals. However, it is
slightly more involved to show that R/I is an integral domain.

R/I-int

3.9. Proposition. Let R be a differential ring, and I a maximal differential ideal
such that the quotient R/I is of characteristic 0. Then R/I is an integral domain.

Proof. (see Proposition 1.19 of [1]) Let S = R/I. Then S contains no proper differ-
ential ideals. Suppose that a and b are nonzero elements of S, such that ab = 0.
The first claim is that Dk(a)bk+1 = 0 for each k ∈ N. ab = 0 implies that
0 = D(ab) = aD(b) + D(a)b, and multiplication by b gives 0 = D(a)b2. Now,
we have the formula

0 = Dn(ab) =
n∑
k=0

(
n

k

)
Dk(a)Dn−k(b)

If the claim holds for k = 1, 2, . . . , n − 1, then by multiplication of the above
expanded formula by bn+1, we see that all but one term multiplies to zero in the sum,
and we are left only with the last term, 0 = Dn(a)bn+1. Hence the first claim follows
by induction.

Let J denote the differential ideal generated by a, whose elements are of the form
n∑
k=0

skD
k(a), where sk ∈ S. Suppose that no power of b is zero. The claim implies

that every element of J is multiplied to zero by bn+1 for the appropriate n. Hence,
every element of J is a zero divisor, and so it cannot contain 1. On the other hand
a is non-zero, so J is a proper differential ideal, which it cannot be, so b is nilpotent.
However, since b could have been an arbitrary zero divisor, the same argument implies
every zero divisor of S is nilpotent. In particular an = 0 for some n which we can
choose to be minimal. Then 0 = D(an) = nan−1D(a). Since S is of characteristic
zero, nan−1 is non-zero. So D(a) is a zero divisor, and it is also nilpotent. We have
shown that the derivative of a zero divisor is again a zero divisor. Repeating this
shows that every Dn(a) is a zero divisor, hence nilpotent, and hence the ideal they
generate, J , is a differential ideal consisting of entirely nilpotent elements. Hence J
cannot contain 1, and so again J is a proper ideal, which it cannot be. It follows that
no such elements a and b exist, so S is an integral domain. �

4. The Wronskian

Let L be a monic linear homogeneous differential operator over the differential
field F . In this section, we aim to construct a differential field extension of F that
contains every solution to the operator L. We first deal with the abstract definitions
and results, before moving into the familiar setting of C(t) and M(U).
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4.1. Definition. Let y1, . . . , ys be elements of a differential ring R. Then,

w(y1, . . . , ys) =

∣∣∣∣∣∣∣∣∣∣∣

y1
(0) y2

(0) y3
(0) . . . ys

(0)

y1
(1) y2

(1) y3
(1) . . . ys

(1)

y1
(2) y2

(2) y3
(2) . . . ys

(2)

...
...

...
...

...
y1

(s−1) y2
(s−1) y3

(s−1) . . . ys
(s−1)

∣∣∣∣∣∣∣∣∣∣∣
is called the Wronskian determinant (or just Wronskian) of y1, . . . , ys.

Linear Independence over Constants.

Now we move onto proving the main properties of the Wronskian. For more details
on the Wronskian, see chapter 2 of [1].

w(n+1)=0

4.2. Proposition. Let R be a differential ring, and y1, . . . , yn+1 in R satisfy the
differential equation L(y) = y(n) + αn−1y

(n−1) + . . . + α0y = 0, where each αi is an
element in R. Then w(y1, . . . , yn+1) = 0

Proof. (see Proposition 2.7 of [1]) By the definition of the Wronskian, we have

w(y1, . . . , yn+1) =

∣∣∣∣∣∣∣∣∣∣∣

y1
(0) y2

(0) y3
(0) . . . yn+1

(0)

y1
(1) y2

(1) y3
(1) . . . yn+1

(1)

y1
(2) y2

(2) y3
(2) . . . yn+1

(2)

...
...

...
...

...
y1

(n) y2
(n) y3

(n) . . . yn+1
(n)

∣∣∣∣∣∣∣∣∣∣∣
Since each yi solves the equation L(y) = 0, this last row is a linear combination of
the previous rows, and so the determinant is 0. �

This next proposition gives necessary and sufficient conditions for the Wronskian
to vanish.

w=0

4.3. Proposition. Let F be a differential field with field of constants C. Then
y1, . . . , yn ∈ F are linearly dependent over C if and only if w(y1, . . . , yn) = 0.

Proof. (see Proposition 2.8 of [1]) Assume first that the yi are linearly dependent over

C. Then there exists ci ∈ C such that not all the ci are zero, and
n∑
i=1

ciyi = 0. Then

for any k, apply the derivation k−times to get
n∑
i=1

ciy
(k)
i = 0. This shows that the ci

form a non trivial solution to the system of equations
n∑
i=1

y
(k)
i xi = 0, 0 ≤ k ≤ n− 1.

The determinant of the coefficient matrix must be 0 then, and this is exactly the
Wronskian of y1, . . . , yn.

Now assume that the Wronskian is 0. By the same reasoning, the above system

has a non trivial solution c1, . . . , cn ∈ F . In particular,
n∑
i=1

ciyi = 0. Without loss of
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generality, we may assume that c1 is non-zero, and divide by c1, so that c1 = 1 ∈ C.
Again, we have that

n∑
i=1

ciy
(k)
i = 0.

Then for each 0 ≤ k ≤ n− 2, we can apply D to this equation to get

n∑
i=1

y
(k+1)
i ci +

n∑
i=1

y
(k)
i D(ci) = 0.

The first sum is 0 by the preceding equation, and in the second sum, D(c1) = 0. This
shows D(c2), . . . , D(cn) is a solution to the system

n∑
i=2

y(k)xi, 0 ≤ k ≤ n− 2.

Again, the determinant of the coefficient matrix of this system is the Wronskian of
y2, . . . , yn. If for each i, D(ci) = 0, then each ci ∈ C, and the proof is complete.
Otherwise, there is a non trivial solution to the system and the Wronskian must be
0. The proof then proceeds by induction, the hypothesis being that y2, . . . , yn are
linearly dependent. �

The Full Universal Solution Algebra.

If L(y) is a monic linear homogeneous differential operator of order n over E, then
the set of solutions to L(y) = 0 in E is a vector space over the field of constants of
E. The previous two propositions give a bound on the dimension of this vector space
of solutions.

vsd¡n

4.4. Theorem. Let L(y) be a monic linear homogeneous differential operator of order
n over a differential field E, with field of constants K, and V the set of solutions to
L(y) = 0 in E. Then V is a vector space over K with dimension at most n.

Proof. (see Theorem 2.9 of [1]) The map which sends y 7→ L(y) on E is a K−linear
transformation, so its kernel (i.e. V ) is a K−vector space. By 4.2, any n+1 elements
from V have vanishing Wronskian, and so by 4.3 they are linearly dependent. Hence,
V must be finite dimensional of dimension at most n. �

4.5. Remark. In Theorem 2.9 of [1], Magid states the result for an operator over a
field F and an extension E ⊃ F . However, any operator over F is automatically an
operator over E, so we omit F in the statement of the proposition.

4.4 gives motivation for the next definition.

4.6. Definition. Let L(y) be a monic linear homogeneous differential operator of
order n over the differential field E. We say that L has a full set of solutions in E
if the vector space of solutions, V , has dimension n over the field of constants of E.
That is, if there are elements y1, . . . , yn ∈ V whose Wronskian is non-zero.

Now we construct a space where the operator L has a full set of solutions.
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4.7. Definition. Let L(y) = y(n) +αn−1y
(n−1) + . . .+α0y be a monic linear homoge-

neous differential operator over the differential field F . Let

S = F [yij : 0 ≤ i ≤ n− 1, 1 ≤ j ≤ n][w−1]

be the localization of the polynomial ring R = F [yij] in n2 variables at w = det(yij).
Then define the derivation on R to be

DR(yij) = yi+1,j, i < n− 1

DR(yn−1,j) = −
n−1∑
i=0

αiyij

and extend to S. We call S the full universal solution algebra for L(y).

If P is any prime differential ideal of S, then the fraction field of S/P is a differential
field extension of F in which L(y) = 0 has n linearly independent solutions (since we
localized at w = det(yij)). Just as in Example 1.5, it is entirely possible that we have
added superfluous solutions, if F already contained a solution to L(y) = 0. This is
dealt with in the next section. For now we will return to C(t) and M(U).

The Airy Operator.

First, we will express our differential equation L(y) = 0, in the form of a matrix
equation ALy = y′, where

AL :=


0
... In−1
0
−α0 −α1 . . . αn−1

 , y =


y
y′

...
y(n−1)

 , y′ =


y′

y′′

...
y(n)


If y1, . . . , yn are linearly independent solutions to L(y) = 0 in M(U), then their

Wronskian is the determinant of the matrix WL whose ith column is yi. Note that in
this definition of the Wronskian, it is only defined up to a non-zero complex constant,
since it depends on the choice of basis for the space of solutions. In general, it may
be hard to find such a basis, however, we are not out of luck. This next proposition
gives a way of computing the Wronskian without explicitly knowing the solutions.

compute-wronskian

4.8. Proposition. Using the notation above, the Wronskian satisfies the differential
equation

y′ = Tr(AL)y

and hence has the form

w(t) = w(t0) exp

 t∫
t0

Tr(AL(s))ds


where t0 is any point in U , and the integral is along any path from t0 to t. In
particular, the Wronskian is always contained in a differential extension obtained by
adjoining an exponential of an anti-derivative.

Proof. See Proposition 5.5 of [3]. �
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4.9. Example. (See Example 5.7 of [3]) Consider the Airy operator, LA(y) = y′′ − ty.
Then we have

ALA
=

(
0 1
t 0

)
.

We can compute the Wronskian using 4.8. Since Tr(ALA
) = 0, we have

wLA
= C exp

∫
0 = C

for some nonzero C ∈ C. So the Wronskian is a nonzero constant. We will come
back to this example in section 5.

An interesting corollary to 4.8 is that the Wronskian is either never 0, or always 0.
w-always-0

4.10. Corollary. Continuing with the notation as above, suppose the Wronskian is
zero at some point t in U . Then the Wronskian is zero at every t in U .

Proof. If w(t) = 0, then

0 = w(t0) exp

 t∫
t0

Tr(AL(s))ds


w(t0) must be zero since the exponential function is never 0. However, t0 was arbi-
trary, so w(t0) = 0 for every t0 in U . �

In section 2, we claimed that the existence and uniqueness theorem for differen-
tial equations guaranteed that there was a maximal number of linearly independent
solutions to L(y) = 0 in M(U). We now prove this assertion.

4.11. Proposition. Suppose U is a simply connected open subset of C, and α0, . . . , αn−1
are analytic on U . If there exists a unique solution to

L(y) = y(n) + αn−1y
(n−1) + . . .+ α0y = 0

in M(U) for any t0 in U and any initial conditions

y(t0) = y0, y
′(t0) = y1, . . . , y

(n−1)(t0) = yn−1

then there exists n linearly independent solutions to L(y) = 0 in M(U).

Proof. For each 0 ≤ i ≤ n− 1, and 0 ≤ m ≤ n− 1 consider the initial conditions

yi(t0)
(m) =

{
1 if i = m

0 otherwise

and apply the existence and uniqueness theorem. Then the matrix
y0

(0)(t0) y1
(0)(t0) y2

(0)(t0) . . . yn−1
(0)(t0)

y0
(1)(t0) y1

(1)(t0) y2
(1)(t0) . . . yn−1

(1)(t0)
y0

(2)(t0) y1
(2)(t0) y2

(2)(t0) . . . yn−1
(2)(t0)

...
...

...
...

...
y0

(n−1)(t0) y1
(n−1)(t0) y2

(n−1)(t0) . . . yn−1
(n−1)(t0)


is just the identity matrix, which has determinant 1. It’s determinant is the Wron-
skian, w(t) = w(y0, . . . , yn−1)(t), evaluated at t = t0. Hence by 4.10, w(t) is nonzero
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everywhere, and by 4.3, {y0, . . . , y(n−1)} are linearly independent over C. By 4.4, this
is a maximally linearly independent set of solutions and hence M(U) contains a full
set of solutions to L(y) = 0. �

5. Picard-Vessiot Extensions

We saw in Example 2.5 that adding a superfluous solution resulted in a new con-
stant. This first Proposition generalizes that result.

newconstants

5.1. Proposition. Let L be a monic linear homogoeneous differential operator of
order n ≥ 1 over the differential field K. Let E ⊃ K be a differential extension.
Denote the subfields of constants by CE and CK respectively, and the vector spaces of
solutions to L = 0 by VE and VK respectively. Suppose that VK has dimension n over
CK. Then VE ) VK if and only if CE ) CK.

Proof. (See Proposition 3.1 of [1]) If CE ) CK , then pick c ∈ CE r CK , and v 6=
0 ∈ VK . Then cv ∈ E is a solution to L = 0, however cv /∈ K. If it were, then
c = cvv−1 ∈ K, however D(c) = 0, so we would have c ∈ CK .

Now assume that VE ) VK . Then we may pick y1, . . . yn in VE, such that

w(y1, . . . , yn) 6= 0

and y1 /∈ VK . Then consider the differential field generated by the yi, F = K〈y1, . . . , yn〉.
Then the yi are in F with nonzero Wronskian, so they form a basis for VF over CF .
However, we can also choose z1, . . . , zn ∈ VK ⊂ F with w(z1, . . . , zn) 6= 0 since K
contains a full set of solutions. So, the zi form a basis for VF over CF as well as VK
over CK . This gives that the CF span of the zi is VF , and hence that CF properly
contains CK . If it did not, then the CF span of the zi would be VK , but we know
that y1 is not in VK . Therefore, F (and hence E), contains a constant not in K. �

5.2. Remark. In Proposition 3.1 of [1] only one direction is stated and proved. Also, it
is stated for a chain of three fields, E ⊃ K ⊃ F , which follows from our proposition.

With the above proposition in mind, what we wish to do is construct an extension
that is generated over F by a full set of solutions to L = 0, and contains no new
constants. This will be a minimal extension which has a full set of solutions to L = 0,
and will be the more general definition of the splitting field (3.3). These extensions
are called Picard-Vessiot extensions, and are defined below.

5.3. Definition. Let L be a monic linear homogeneous differential operator of order
n over the differential field F . A differential extension field E ⊃ F is called a Picard-
Vessiot extension of F for L if:

(1) E is generated over F as a differential field by the set of solutions V of L = 0
in E. That is E = F 〈V 〉 (the smallest field containing both F and V );

(2) E contains a full set of solutions to L = 0 (there are yi ∈ V , 1 ≤ i ≤ n, such
that w(y1, . . . , yn) 6= 0).

(3) E is a no new constant extension of F

This definition agrees with our previous definition of the splitting field. Every
splitting field in the sense of 3.3 is a Picarrd-Vessiot extension, and every Picard-
Vessiot extension of F ⊂ M(U) arises as the splitting field for some monic linear
homogeneous differential operator with coefficients in F (see Theorem 4.8 of [3]).
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Existence and Uniqueness of Picard-Vessiot Extensions.

We wish to prove that for a given differential operator L, its Picard-Vessiot exten-
sion is unique up to isomorphism. We must also show that such an extension exists.
Then, we will be justified in calling it “the” Picard-Vessiot extension of F for L. This
next proposition gets us half way to proving the uniqueness.

E1=E2

5.4. Proposition. Let L be a monic linear homogeneous differential operator of order
n over the differential field F of characteristic 0. Let E1, and E2 be Picard-Vessiot
extensions of F for L. Suppose there is a no new constant extension E ⊃ F , that
there exists F−differential embeddings σ1 : E1 → E, and σ2 : E2 → E. Then E1 and
E2 are F−differentially isomorphic.

Proof. (See Proposition 3.3 of [1]) Let Vi, i = 1, 2, and V be the vector space of
solutions in Ei and E respectively. Note that each of these extensions has the same
field of constants C. So the dimension of Vi is n and the dimension of V is at most
n. For any y in Vi, L(σi(y)) = σ(L(y)) = σ(0) = 0, so that σi(Vi) ⊂ V . This gives
that each vector space coincides, since linear independence in Vi corresponds to linear
independence in σi(Vi) by the injectivity of σi. Since each Ei = F 〈Vi〉, this gives that

σi(F 〈Vi〉) = F 〈σi(Vi)〉) = F 〈V 〉
and hence, their ratio, σ−12 ◦ σ1 is the desired isomorphism. �

5.5. Remark. In Proposition 3.3 of [1], the statement of the proposition is that E1

and E2 have the same image in E, however the result which is needed is that they
are isomorphic.

The more difficult part of proving the uniqueness of Picard-Vessiot extensions is
actually constructing a no new constant extension, which each Ei injects into.

unique

5.6. Theorem. Let L, F , E1, and E2 be as above. Suppose that F has an algebraically
closed field of constants. Then there is an F−differential isomorphism between E1

and E2.

Proof. (See Theorem 3.5 of [1]) Consider R = E1⊗F E2. R is finitely generated as an
algebra over E2, since E1 is finitely generated over F (by a basis for the vector space
of solutions V1). Let Q be a proper maximally differential ideal of R. Consider the
inverse image of Q in E1

I = {a ∈ E1 : a⊗ 1 ∈ Q}
I is a differential ideal in E1, which has no proper ideals other than the zero ideal,
since it is a field. If I = E1, then 1⊗1 ∈ Q, contradicting Q being proper. So I is the
zero ideal. This gives that the map σ1 : E1 → R/Q, which sends a 7→ a⊗ 1 +Q is an
embedding. For if a⊗1+Q = b⊗1+Q, then (a− b)⊗1 ∈ Q, so a− b ∈ I, and hence
a = b. The same is true for the map σ2 : E2 → R/Q, where b 7→ 1 ⊗ b. Now, R/Q
has characteristic 0, since if n(1⊗ 1) +Q = 0, then n⊗ 1 +Q = 0, so n ∈ I, implying
n = 0. Hence, by 3.9, R/Q is an integral domain. Now, R/Q is an integral domain,
finitely generated over E2 (which has an algebraically closed field of constants), and
has no proper differential ideals. So by 3.8, the constants of R/Q coincide with the
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constants of E2, and hence with F . These embeddings extend to embeddings into
the fraction field of R/Q, E. Since the tensor product is over F , f ⊗ 1 = 1⊗ f , so we
may view F ⊂ E as

F =

{
f ⊗ 1 +Q

1⊗ 1 +Q
: f ∈ F

}
,

and both embeddings are the identity on F . These are differential embeddings.
Hence, we have two F−differential embeddings of two Picard-Vessiot extensions into a
no new constant extension of F , so by 5.4, E1 and E2 are F−differentially isomorphic.

�

5.7. Remark. In Theorem 3.5 of [1], Magid first constructs a Picard-Vessiot extension,
and then proves that any other Picard-Vessiot extension is isomorphic to it. We
instead show that any two abstract Picard-Vessiot extensions are isomorphic, and
then construct one explicitly. This made the proof easier to follow. Details were also
added to the proof which Magid left out.

So far, we have shown that for a monic homogeneous differential operator L over F
which has an algebraically closed field of constants, any two Picard-Vessiot extensions
of F for L are isomorphic. However, we still need to show that the Picard-Vessiot
extension actually exists.

existence

5.8. Theorem. Let F and L be as above. Let C be the field of constants of F , S the
full universal solution algebra for L, and P a proper maximal differential ideal of S.
Then P is prime and the fraction field, E, of S/P is a Picard-Vessiot extension of
F for L.

Proof. (See Theorem 3.4 of [1]) Since S is finitely generated over F by the solutions to
L = 0 and the inverse Wronskian, so is S/P . By 3.9, S/P is an integral domain, and
since P is a maximally differential ideal, S/P contains no proper differential ideals.
Again, then, 3.9 applies (S/P has characteristic 0 since F does and P is proper), and
the constants of E coincide with C. Since S/P is generated by the solutions to L = 0,
so is E, and since the Wronskian is a unit in S/P , it is also a unit in E, and hence
is non-zero. So E contains a full set of solutions to L = 0. So, E is generated by the
solutions to L = 0, contains a full set of solutions, and contains no new constants,
hence it is a Picard-Vessiot extension as claimed. �

Example of a Picard-Vessiot Extension.

By 5.6, any Picard-Vessiot extension must be isomorphic to the extension con-
structed in 5.8. However, we already saw an example of a Picard-Vessiot extension
in Example 2.4, so a natural question is how this construction is related to Example
2.4.

5.9. Example. Consider L(y) = y−y′ over C(t). In this case, the full universal solution
algebra is

C(t)[y][w−1]

with y′ = y, and where the Wronskian w is the determinant of the 1× 1 matrix [y],
which is just y. Hence, it is the localized polynomial ring

C(t)[y][y−1]
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Consider the natural inclusion map, i : C(t)[y] → C(t)[y][y−1], given by p(y) 7→ p(y)
1

.
We can relate the differential ideals of the localized polynomial ring to the differential
ideals of the regular polynomial ring. Let J be any differential ideal of the localized
polynomial ring, and consider its inverse image under the inclusion map

i−1(J) =

{
p(y) ∈ C(t) :

p(y)

1
∈ J
}

It can easily be checked that i−1(J) is a differential ideal of C(t)[y]. Hence, it is
generated by a single element, f(y) (since every polynomial ring is a principle ideal

domain). It must be the case then that the differential ideal
〈
f(y)
1

〉
is contained in

J . On the other hand, any element in J has the form p(y)
yn

, and so

yn
p(y)

yn
=
p(y)

1

is also in J , and hence p(y) is in i−1(J). This gives us that p(y) = f(y)g(y) for some
polynomial g(y). Hence, we have

p(y)

yn
=
f(y)g(y)

yn
=
g(y)

yn
f(y)

1

and so J is contained in
〈
f(y)
1

〉
. This shows that any differential ideal in the localized

polynomial ring is generated by the same element which generates its pre-image in the
regular polynomial ring. Therefore, we can look for the proper differential ideals in the
regular polynomial ring, and their images will give us the corresponding differential
ideals in the localized polynomial ring.

Suppose then that I = 〈f(y)〉 is a differential ideal of C(t)[y], where

f(y) = yn +
n−1∑
i=0

aiy
i

then f(y)′ must be a multiple of f(y), but

f(y)′ = nyn +
n−1∑
i=0

(a′i + iai)y
i

so we must have that
f(y)′ = nf(y).

For any i 6= 0, we have the following equation on the ratios of the coefficients

n =
a′i + iai
ai

and so
(n− i)ai = a′i.

The non zero solutions to these differential equations are exponentials, which are not
contained in C(t), and hence every coefficient must be zero. The case of i = 0 gives
the same conclusion. This shows that any differential ideal of the polynomial ring is
in the form of 〈yn〉. The image of this ideal in the localized polynomial ring contains
1, and is hence the entire ring. From this, we conclude that the only differential ideal
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of the localized polynomial ring is the zero ideal. Since it is the only differential ideal,
it is a maximally differential ideal, so the quotient

C(t)[y][y−1]/〈0〉 ∼= C(t)[y][y−1]

and the field of fractions is just

C(t)(y)

which is isomorphic to the splitting field of Example 2.4 by the map y 7→ et, and the
identity on C(t)

This example highlights the importance of localization. If we did not localize,
then the ideal 〈y〉 would be a maximally differential ideal, and the quotient would be
isomorphic to C(t), which is not isomorphic to the splitting field given in Example
2.4. Essentially, localization by y is formally declaring y to be nonzero, whereas
the quotient C(t)[y]/〈y〉 is formally declaring y to be zero. Since we want our field
to contain a full set of solutions, we localize by the Wronskian to ensure that it is
nonzero in the field of fractions.

6. Differential Galois Theory

Now that we have a differential version of the splitting field, we can consider the
group of F−automorphisms acting on it. That is, the group of automorphisms which
commute with the derivation and restrict to the identity on F .

Differential Galois Groups.

6.1. Definition. Let F be a differential field, and E a differential extension of F . The
differential Galois Group, DGal(E/F ), is the group of automorphisms σ : E → E
which restrict to the identity on F , and satisfy σ(D(a)) = D(σ(a)) for every a ∈ E.
The group operation is composition of automorphisms.

If L is a monic linear homogeneous differential operator of order n over F , and
E ⊃ F its Picard-Vessiot extension, then just as expected DGal(E/F ) permutes the
solutions of L(y) = 0. Since E is generated by the n−dimensional space of solutions
V , the elements of DGal(E/F ) are determined by their action on V . Thus, we may
view DGal(E/F ) as a subgroup of GL(V ), the group of invertible linear operators
on V . Once a basis is chosen for V , this is naturally isomorphic to the group of n×n
invertible matrices, and this identification will always be made. In fact, it is not just
any subgroup, but an algebraic subgroup (See Theorem 4.3 of [3]).

Let us see a few examples of what this means.

6.2. Example. (See section 4 of [3]) The additive group C has lots of subgroups, for
instance isomorphic to Z, Z⊕ Z, R, and many more. However, none of these groups
are determined by a finite number of polynomials, since each polynomial has a finite
number of roots. They are the zero sets of certain other functions. Z is determined by
sin(πz), and R is determined by f(z) = z− z̄, both of which are not polynomials. The
multiplicative group C∗ also has many subgroups, however the only algebraic ones
are the multiplicative subgroups consisting of the nth roots of unity (determined by
zn − 1 = 0).
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G/G0-finite

6.3. Theorem. Let G be an algebraic group. The connected component containing
the identity, G0, is a normal algebraic subgroup of finite index (that is, the quotient
G/G0 is finite).

Proof. See section 7.3 of [4]. �

Another characterization of the Picard-Vessiot is one that is taken as a definition
in [3]. Here, we will state it as a proposition without proof.

fixfield=F

6.4. Proposition. Let E be a Picard-Vessiot extension of F for the monic linear
homogeneous differential operator L. The set of elements which is fixed by every
automorphism σ ∈ DGal(E/F ) is precisely F . �

This means that if we can show an element a of E is fixed by every σ inDGal(E/F ),
then we will have shown a is contained in F .

Dgalfinite=algebraic

6.5. Proposition. Let L be a monic linear differential operator over F , and E its
Picard-Vessiot extension. Suppose that DGal(E/F ) is finite. Then every element of
E is algebraic over F .

Proof. (See Proposition 4.6 of [3]) Let v ∈ E. Define

f :=
∏

σ∈DGal(E/F )

(x− σ(v))

This polynomial is of finite degree and its coefficients are fixed by DGal(E/F ), hence
by 6.4 they are in F . One of the σ in the product is the identity, so f has v as a root,
and hence v is algebraic over F . �

6.5 will be particularly useful when we are in the case of M(U) and C(t), since v
being algebraic over C(t) implies that v has finitely many poles.

FTDGT

6.6. Theorem. Let F be a differential field with algebraically closed field of con-
stants, and K ⊃ F a Picard-Vessiot extension. If M is a differential subfield of K
such that F ⊂ M ⊂ K, then DGal(K/M) is an algebraic subgroup of DGal(K/F ).
Furthermore, this defines an inclusion-reversing bijection between differential sub-
fields of K containing F , and the algebraic subgroups of DGal(K/F ). Under this
bijection, the normal subgroups of DGal(K/F ) correspond to the differential sub-
fields M ⊂ K such that M ⊃ F is also a Picard-Vessiot extension. In this case,
DGal(M/F ) ∼= DGal(K/F )/DGal(K/M)

Proof. See Theorem 6.5 of [1] �

Suppose that L is a monic linear homogeneous differential operator over the dif-
ferential field F with algebraically closed field of constants, and E its Picard-Vessiot
extension. Let y1, . . . , yn be a full set of solutions in E, w be their Wronskian, and
V be their span over C. If w is not in F , then we can create an intermediate Picard-
Vessiot extension by adjoining the Wronskian, that is F ⊂ F (w) ⊂ E. This next
proposition describes the structure of DGal(E/F (w)).
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Dgal-in-sl2

6.7. Proposition. Let L, F , E, w, and V be as above. Then after identifying
DGal(E/F ) with a subgroup of GL(V ), we have

DGal(E/F (w)) = DGal(E/F ) ∩ SL(V )

where SL(V ) ⊂ GL(V ) is the subgroup of automorphisms of determinant 1.

Proof. See Proposition 4.23 of [1] �

As we saw in Example 3.8, the Wronskian for the Airy operator was some complex
constant C ∈ C. In particular, for the intermediate extension C(t)(w), we have
C(t)(w) = C(t), and so by 6.7, the Differential Galois Group DGal(ELA

/C(t)) is a
subgroup of SL2(C). Later, we will determine exactly which subgroup it is.

7. Liouvillian Extensions

The existence and uniqueness theorem of section 2 guarantees that solutions exist
in M(U) for differential equations of a certain form, but we wish to know more
about these solutions than just their existence. It would be nice if we could express
the solutions in terms of the familiar elementary functions from calculus. In this
section, we give a condition for when this is possible. Of course, what we mean by
elementary function will need to be made precise.

7.1. Definition. Let K be a differential field, and a, b ∈ K. g is called an exponential
of a if g satisfies the differential equation

g′

a′
= g

7.2. Definition. An extension K of a differential field F is called a Liouvillian ex-
tension if there exists a sequence

F = F0 ⊂ F1 ⊂ . . . ⊂ Fm = K

where each FJ+1 is either finite algebraic over Fj, generated by an antiderivative of
an element in Fj, or generated by an exponential of an antiderivative of an element
in Fj.

When the base field F is the rational functions C(t), we say that the elements of
K are elementary functions. Indeed, any familiar elementary function from calculus
is contained in a Liouvillian extension. This next proposition gives the condition for
an extension to be Liouvillian.

Liouvillian

7.3. Proposition. Let L be a linear differential operator over the differential field F ,
and E its Picard-Vessiot extension. Let G = DGal(E/F ). The differential field E is
contained in a Liouvillian extension if and only if the connected component containing
the identity, G0, is a solvable group.

Proof. See sections 25-27 of [6] �
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8. The equation y′ = t− y2

We have finally built up enough theory to show that the equation y′ = t− y2 has
no elementary solutions. This section will be dedicated to proving this fact. This
first result we need is to classify the connected subgroups of SL2(C).

subgroups

8.1. Proposition. Every proper connected subgroup of SL2(C) is conjugate to one of
the following:

(1)

{(
1 0
0 1

)}
(2)

{(
a 0
0 1

a

)
: a ∈ C∗

}
(3)

{(
1 b
0 1

)
: b ∈ C

}
(4)

{(
a b
0 1

a

)
: a ∈ C∗, b ∈ C

}
Proof. The connected subgroups of SL2(C) are in bijection with the Lie sub-algebras
of the Lie algebra sl2(C) by the exponential map, exp : sl2(C)→ SL2(C), where

exp(A) =
∞∑
n=0

An

n!
.

So we can find the sub-algebras (up to conjugation) of sl2(C), and exponentiate them
to get the connected subgroups of SL2(C). Since sl2(C) is a 3 dimensional vector
space, this is an easy task.

The only 0 dimensional sub algebra is{(
0 0
0 0

)}
which exponentiates to {(

1 0
0 1

)}
.

Every matrix is conjugate to its Jordan form, so the one dimensional sub-algebras are
determined by the possible Jordan forms (diagonalizable versus non-diagonalizable).
They are,

(1)

{(
a 0
0 −a

)
: a ∈ C

}
(2)

{(
0 b
0 0

)
: b ∈ C

}
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The first exponentiates to

∞∑
n=0

(
a 0
0 −a

)n
n!

=


∞∑
n=0

an

n!
0

0
∞∑
n=0

(−a)n
n!

 =

(
ea 0
0 e−a

)

which gives {(
a 0
0 1

a

)
: a ∈ C∗

}
,

since ex maps surjectively onto C∗. The second exponentiates to

∞∑
n=0

(
0 b
0 0

)n
n!

=

(
1 0
0 1

)
+

(
0 b
0 0

)
+

(
0 0
0 0

)
+ . . . =

(
1 b
0 1

)
.

The only 2 dimensional sub algebra is{(
a b
0 −a

)}
.

This is because any 2 dimensional subalgebra of sl2(C) is automatically a maximally
solvable (Borel) subalgebra (since any two dimensional Lie Algebra is solvable and
sl2(C) is not), and Borel subalgebras are conjugate. For n = 2k, we have(

a b
0 −a

)n
=

(
an 0
0 (−a)n

)
and for n = 2k + 1, we have(

a b
0 −a

)n
=

(
an an−1b
0 (−a)n

)
.

This 2 dimensional sub-algebra exponentiates to

∞∑
n=0

(
a b
0 −a

)n
n!

=
∞∑
k=0

(
a2k 0
0 (−a)2k

)
(2k)!

+

(
a2k+1 a2kb

0 (−a)2k+1

)
(2k + 1)!

for a 6= 0 this converges to (
ea b sinh(a)

a
0 e−a

)
and this is equivalent to {(

a b
0 1

a

)
: a ∈ C∗, b ∈ C

}
.

This concludes the list, since sl2(C) is 3 dimensional. �

All of the theory we have developed has been about monic linear homogeneous
differential operators, however the operator we are concerned with in this section is
not linear. We must then relate it to one which is linear and we can apply the theory
to. Consider again the Airy operator over C(t),

LA(y) = y′′ − ty.
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Since the function t has no poles, the splitting field ELA
is some subfield of M(C).

Suppose that v is a solution to LA, that is v′′ − tv = 0, and consider the logarithmic
derivative w = v′

v
. Differentiating w, we get

w′ =
vv′′ − (v′)2

v2

=
tv2 − (V ′)2

v2
, since LA(v) = 0

= t− w2.

So solutions to LA produce solutions to y′ = t − y2. We can also reverse this
process. If w is a solution to y′ = t − y2, then v = exp(

∫
w) is a solution to LA.

Before we proceed any further we must look more closely at first and second order
linear operators.

8.2. Example. Let L be a first order linear operator, and consider the non-homogeneous
equation L(y) = β. We take the equation y′ + αy = β, multiply by the integrating
factor, w := exp(

∫
α). Note that w is contained in a Liouvillian extension. This

transforms our equation into (vw)′ = wβ, which gives the solutions

v =
1

w

∫
wβ.

In particular v is contained in a Liouvillian extension.
Now consider a second order monic linear homogeneous operator L. Let v be a

solution to L(y) = 0, and K = F (v). We can show that EL ⊃ K is a Liouvillian
extension, and hence if K is Liouvillian over F , that EL ⊃ F is Liouvillian. Let
w be another solution linearly independent to v. Then we have the Wronskian,
WL = vw′ − wv′, and hence w satisfies the first order non-homogeneous equation

w′ − v′

v
w =

WL

v

over K. Here, WL

v
is contained in a Liouvillian extension of K. From what we saw

above, EL ⊃ K is a Liouvillian extension, and hence if there exists a solution to
a second order operator contained in a Liouvillian extension, then all solutions are
contained in a Liouvillian extension.

We now need to show that no nonzero solution to LA belongs to a Liouvillian
extension. Once this is done, we can conclude that no solution to y′ = t− y2 belongs
to a Liouvillian extension and we will have completed our goal. As we saw in section 5,
DGal(ELA

/C(t)) is a subgroup of SL2(C). We now will show exactly which subgroup
it is.

8.3. Theorem. G = DGal(EL/C(t)) = SL2(C)

Proof. (See Theorem 8.1 of [3]) Let G0 be the connected component containing the
identity of G. For each of the connected subgroups from 8.1, (1, 0)† is a common
eigenvector. For a contradiction, assume G0 is proper. Then it is conjugate to one of
the previous groups and hence each element of G0 would have a common eigenvector
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v in ELA
. Then for any σ in G0 with eigenvalue a for v, we would have

σ(
v′

v
) =

σ(v)′

σ(v)
=

(av)′

av
=
v′

v

so w = v′

v
is left fixed by G0. Hence, the Picard-Vessiot extension, M , which is

generated by w is a differential subfield of ELA
, and G0 ⊂ DGal(ELA

/M) since G0

fixes w. Applying the Fundamental Theorem of Differential Galois Theory, we have

DGal(M/C(t)) ∼= G/DGal(ELA
/M)

Which is a quotient of G by a group containing G0. Hence it is finite, since G/G0 is
finite by 6.3. We can then apply 6.5, and see that w is algebraic and so it has finitely
many poles.

However, as we saw previously, w satisfies the differential equation w′ = t − w2.
The goal then is to show that solutions to this differential equation have infinitely
many poles, and we will have reached our contradiction.

First, we note that if w is such a solution with finitely many poles, then when we
restrict w to the real line, it must be defined on some unbounded interval (since the
only points which w is not defined on are its poles). Thus, it is enough to show that
the real part of a solution w is only defined on a bounded open interval of the real
line.

If w is a solution to the previous differential equation, then −w is a solution to the
equation w′ = w2 − t, so we may focus our attention here. Restricting t and w to be
real, for any t < −1, we have

w′ = w2 − t > w2 + 1

and so any solution to w′ = w2−t must climb faster than the solutions to w′ = w2+1,
which are the functions tan(t+C). Suppose then, that w is real a solution defined on
some open interval to the left of −1, containing a point t0 < −1− π

2
with w(t0) = 0.

For t > t0, w must be above tan(t − t0) since the functions agree at t = t0 and w
climbs faster. On the other hand, for any t < t0 the only way for w to meet tan(t−t0)
at t = t0 is if it were below tan(t−t0) (since w still climbs faster). In fact if w(t0) = s0
for some s0 ∈ R, the same argument could be made by a shift of the tangent function.
This shows that the interval which w is defined on, is of length at most π. However,
as mentioned above, this contradicts w having finitely many poles. Hence, w cannot
be algebraic, and our assumption that G0 6= SL2(C) is false. �
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8.4. Corollary. No nonzero solution to the Airy operator belongs to a Liouvillian
extension of C(t).

Proof. (See Corollary 8.2 of [3]) By 7.3, if a solution (and hence all by Example 7.2)
were contained in a Liouvillian extension, then the connected component containing
the identity, G0 = SL2(C), would be solvable. Solvability is preserved by quotients,
so PSL2(C) = SL2(C)/ {±I} would be solvable. However, PSL2(C) is simple, so it
is solvable if and only if it is abelian. This is not the case, so there are no solutions
contained in a Liouvillian extension. �

8.5. Corollary. The differential equation y′ = t − y2 has no solutions which belong
to a Liouvillian extension of C(t)

Proof. (See Corollary 8.3 of [3]) Suppose v is such a solution, then exp(
∫
v) is con-

tained in a Liouvillian extension of C(t), and it satisfies the Airy operator, contra-
dicting the previous corollary. �
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